Trapping of a Methanesulfonanilide by Closure of the Herg Potassium Channel Activation Gate

نویسندگان

  • John S. Mitcheson
  • Jun Chen
  • Michael C. Sanguinetti
چکیده

Deactivation of voltage-gated potassium (K(+)) channels can slow or prevent the recovery from block by charged organic compounds, a phenomenon attributed to trapping of the compound within the inner vestibule by closure of the activation gate. Unbinding and exit from the channel vestibule of a positively charged organic compound should be favored by membrane hyperpolarization if not impeded by the closed gate. MK-499, a methanesulfonanilide compound, is a potent blocker (IC(50) = 32 nM) of HERG K(+) channels. This bulky compound (7 x 20 A) is positively charged at physiological pH. Recovery from block of HERG channels by MK-499 and other methanesulfonanilides is extremely slow (Carmeliet 1992; Ficker et al. 1998), suggesting a trapping mechanism. We used a mutant HERG (D540K) channel expressed in Xenopus oocytes to test the trapping hypothesis. D540K HERG has the unusual property of opening in response to hyperpolarization, in addition to relatively normal gating and channel opening in response to depolarization (Sanguinetti and Xu 1999). The hyperpolarization-activated state of HERG was characterized by long bursts of single channel reopening. Channel reopening allowed recovery from block by 2 microM MK-499 to occur with time constants of 10.5 and 52.7 s at -160 mV. In contrast, wild-type HERG channels opened only briefly after membrane hyperpolarization, and thus did not permit recovery from block by MK-499. These findings provide direct evidence that the mechanism of slow recovery from HERG channel block by methanesulfonanilides is due to trapping of the compound in the inner vestibule by closure of the activation gate. The ability of HERG channels to trap MK-499, despite its large size, suggests that the vestibule of this channel is larger than the well studied Shaker K(+) channel.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Voltage-sensing domain mode shift is coupled to the activation gate by the N-terminal tail of hERG channels

Human ether-a-go-go-related gene (hERG) potassium channels exhibit unique gating kinetics characterized by unusually slow activation and deactivation. The N terminus of the channel, which contains an amphipathic helix and an unstructured tail, has been shown to be involved in regulation of this slow deactivation. However, the mechanism of how this occurs and the connection between voltage-sensi...

متن کامل

Drug trapping in hERG K+ channels: (not) a matter of drug size?† †The authors declare no competing interests.

Inhibition of hERG K channels by structurally diverse drugs prolongs the ventricular action potential and increases the risk of torsade de pointes arrhythmias and sudden cardiac death. The capture of drugs behind closed channel gates, so-called drug trapping, is suggested to harbor an increased pro-arrhythmic risk. In this study, the trapping mechanisms of a trapped hERG blocker propafenone and...

متن کامل

Probing the interaction between inactivation gating and Dd-sotalol block of HERG.

Potassium channels encoded by HERG underlie I:(Kr), a sensitive target for most class III antiarrhythmic drugs, including methanesulfonanilides such as Dd-sotalol. Recently it was shown that these drugs are trapped in the channel as it closes during hyperpolarization. At the same time, HERG channels rapidly open and inactivate when depolarized, and methanesulfonanilide block is known to develop...

متن کامل

Drug trapping in hERG K+ channels: (not) a matter of drug size?

Inhibition of hERG K+ channels by structurally diverse drugs prolongs the ventricular action potential and increases the risk of torsade de pointes arrhythmias and sudden cardiac death. The capture of drugs behind closed channel gates, so-called drug trapping, is suggested to harbor an increased pro-arrhythmic risk. In this study, the trapping mechanisms of a trapped hERG blocker propafenone an...

متن کامل

Probing the Interaction Between Inactivation Gating and D-Sotalol Block of HERG

Potassium channels encoded by HERG underlie IKr, a sensitive target for most class III antiarrhythmic drugs, including methanesulfonanilides such as D-sotalol. Recently it was shown that these drugs are trapped in the channel as it closes during hyperpolarization. At the same time, HERG channels rapidly open and inactivate when depolarized, and methanesulfonanilide block is known to develop in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 115  شماره 

صفحات  -

تاریخ انتشار 2000